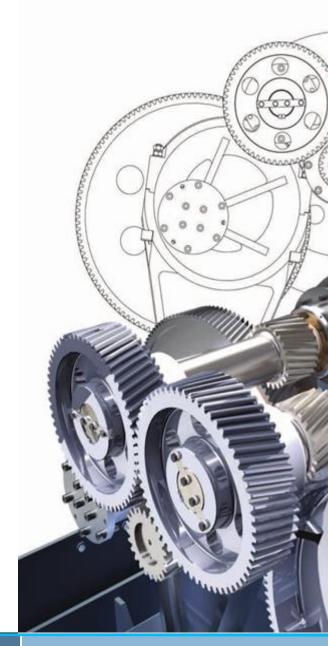
Design of an Unmanned Tilt-Rotor Aircraft for Multi-Mission Applications

MEAC Presentation Team 8

November 12th, 2015


Sponsor: Dr. Chiang Shih

Advisor: Dr. Farrukh Alvi

Team Members: Kade Aley Jake Denman Daylan Fitzpatrick Christian Mård Patrick McGlynn Kikelomo Ijagbemi

Outline

- Project Overview
- Concept Evolution
- Product Selection
- Potential Challenges/ Resolution
- Progress
- Future Plans

Kikelomo Ijagbemi - 2

Project Overview Background

- The Seafarer Chapter of Association for Unmanned Vehicle Systems International (AUVSI)
 - Student Unmanned Aerial System (SUAS)
 competition
- Challenges students to design a system capable of completing a specific and independent aerial operation.
- Stimulate and foster interest in innovation and careers in the aerospace industry

Project Overview Competition Primary Objectives

- Autonomous Flight
 - Takeoff, waypoint navigation, and landing all done autonomously
- Search Area
 - Autonomous localization and classification, with imagery

Kikelomo Ijagbemi - 4

Project Overview

Competition Secondary Objectives

• Automatic Detection, Localization, Classification

Kikelomo Ijagbemi - 5

- Actionable Intelligence
- Off-Axis Standard Target
- Emergent Target
- Air-Drop
- Simulated Remote Information Center
- Interoperability
- Sense, Detect, and Avoid

Project Overview Constraints & Requirements

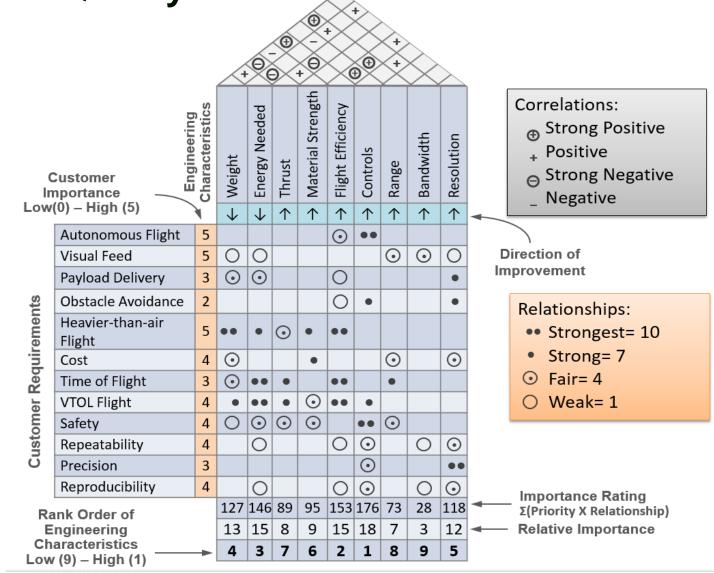
Constraints (2016)

- Minimum 10 Hz communication
- Less than 55 pounds
- Max airspeed of 115 mph
- Flight altitude of 100ft 750ft

Requirements (2016)

- Capable of Vertical Take-off and Landing (VTOL)
- Autonomous path planning & obstacle avoidance

Patrick McGylnn - 6


• Autonomous target detection & characterization

Project Overview Objectives

- Research various forms of aerial vehicles that utilize VTOL flight
- Design and manufacture autonomous aerial vehicle capable of VTOL flight and target detection

- Assembly of vehicle for testing of functionality
- Optimize for acceptable competition parameters

House of Quality

Project Overview Needs Assessment

Needs Statement

 "There needs to be a solution to minimize human danger and improve overall quality of human life, in the aerospace industry."

Goal Statement

 "The goal is to design an autonomous unmanned aerial vehicle able to meet competition parameter while emphasizing safety."

Previous Years

Year 2012

• Purchased Fixed Wing Aircraft – Senior Telemaster

Year 2013

- Fixed Wing Aircraft Senior Telemaster
- Firmware used was ArduPilot Mega 2.5
- Nitro powered motor

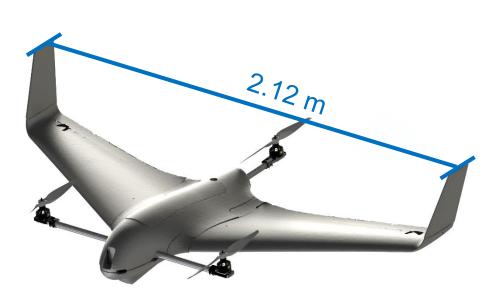
Previous Years

Year 2014

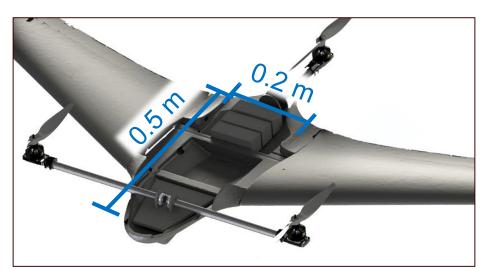
- Purchased a new fixed wing plane (Senior Telemaster Plus)
- ArduMega 2.5 autopilot system
- Used electric motor powered with batteries

Previous Years

Year 2015


- Adapted Senior Telemaster plus with VTOL capabilities
- Used five motors
- Heavy (~8,300g)

Skywalker Tri-copter


Skywalker X8

- Durable
- Easily replaceable parts
- Large internal capacity
- Suitable lift characteristics

Tri-Copter

- Lower power consumption
- Lighter (5,500g)
- Streamline Profile

Propulsion

Qty	Component	Manufacturer	Functional Parameter
3	Motor	Cobra	410kv
3	Electronic Speed Controller	Cobra	40Amp
3	Propeller	RC Timer	16" x 5.5"
2	Battery	Venom	22.2V , 5000mAh

Figure 5 – 4510/450kv Cobra Motor^[4]

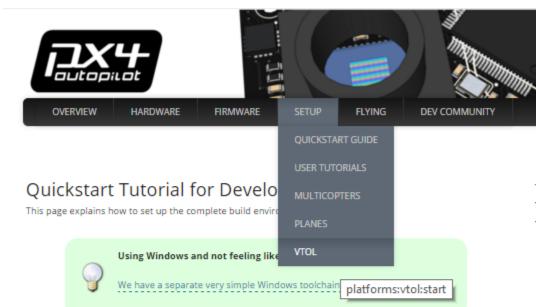


Figure 8 – Electronic Speed Controller^[5]

Controls

Flight Controller

- Pixhawk
- Active VTOL development
- Open source development
- Development resources

Build environment

Follow the steps in PX4 Build Environment to install required packages before you start the main installation.

Toolchain Installation

Install and setup the ARM toolchain: Toolchain Installation

Editor, GIT Version Control, Code style

Two recommended editors are Sublime Text 3 (unrestricted "free" trial, runs on Windows, Linux and Macintosh) and Notepad++ (free, open source).

Kade Aley -15

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Controls

Description	Front Tilt- Rotor	Tail Tilt- Rotor	Elevons (at 50 mph)
Max. Force (Newtons)	7.556	2.940	9.245
Min. Torque (oz-in)	87.091	33.845	59.902
Max. Torque (oz-in)	131	131	76

Elevon Servo

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Sensor/Payload Package

Sensor Package

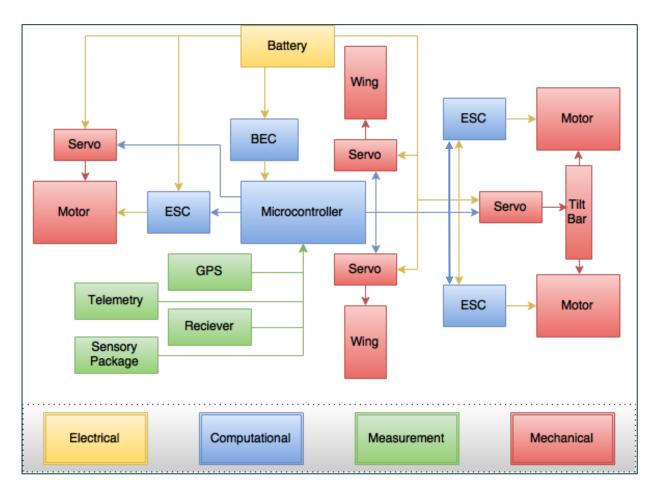
- Pixycam
- Characterization identification
- Capable of learning
- Open source development

Payload Package

- Storage optimization
- Release mechanisms

Potential Challenges

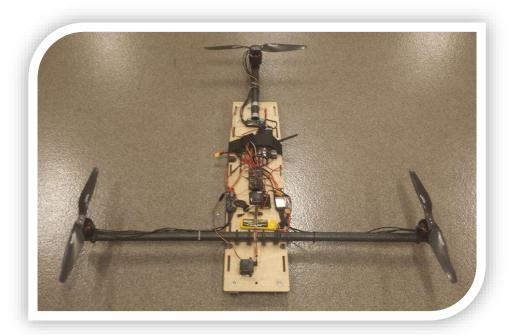
- Autonomous flight
 - Path Planning Algorithms
 - Obstacle Avoidance Algorithms
- Vehicle Controls
 - Transitional flight
- Imaging software / hardware
 - Target recognition
 - Microcontroller communication


Problem Resolution

- Firmware complications
 - Switching to Ubuntu (Linux) operating system for firmware development
 - Using QGroundControl microcontroller interface

Built target modules bottle drop 78%1 [79%] Built target examples rover steering contro Built target fw io 80%] [81%] Built target modules fw pos control l1 Built target romfs [87%] [96%] Built target modules_systemlib Built target uavcan 97%] Built target uavcan_stm32_driver [100%] Built target modules __uavcan [100%] Built target firmware_nuttx [100%] Built target build firmware px4fmu-v2 patrick@iRiSh:~/src/Firmware\$

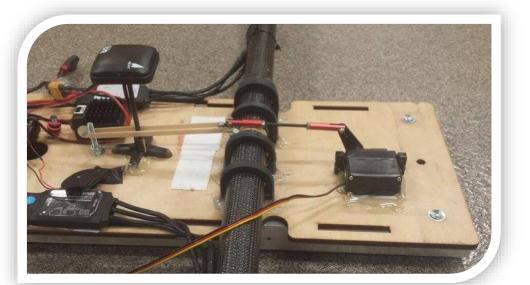
Progress Ideal Final Design


Component Organization

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Overall Design

- Rapid construction
- Re-use of material


Motor mounts

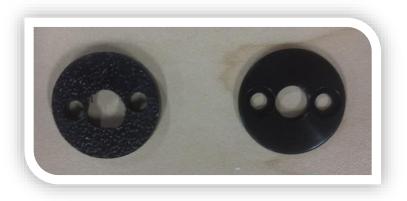
- ABS plastic
- Affixed with hot glue

Front tilt bar

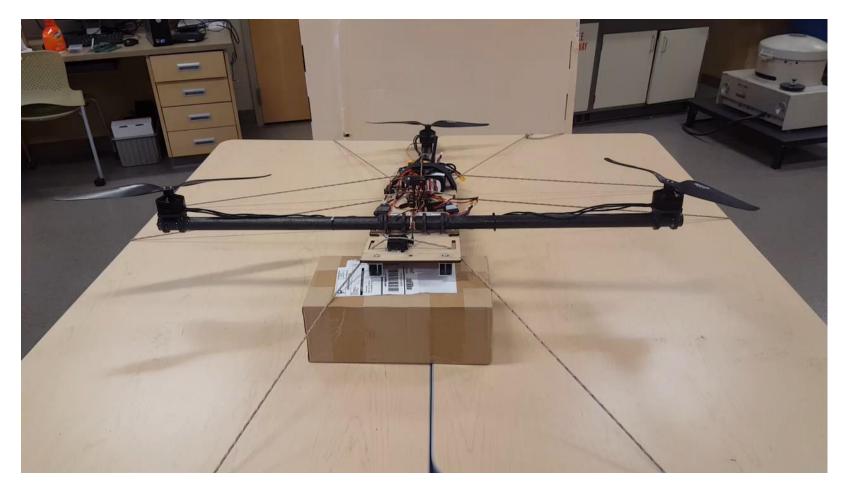
- Driven by external servo
- Loose fit allows rotation
- Requires spring assist

Rear tilt mechanism

- Driven by internal servo
- Simple design
- Loose fit allows rotation



Conflict Resolution

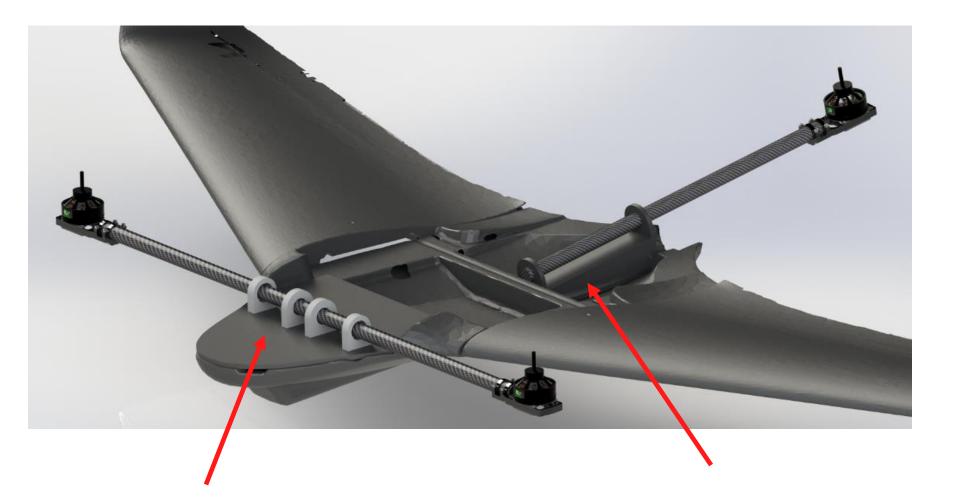

- Rear Servo Slippage
 - Epoxy reinforced

- Propeller Adapters
 - Replicas constructed

Front Tilt Bar and Rear Tilt Mechanism

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Manual Tricopter Flight


Christian Mard - 25

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Tricopter Integration

- Needed to fix the prop arms to the foam structure
 - Front and Rear mounts designed
- Set at angle to offset initial forward motion

Christian Mard - 27

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Gantt Chart

Sep		Oct					Nov			Dec			
Aug 30 Sep 6 Sep 13 Sep 20 S	ep 27 Oct	4 Oct 11	Oct 18	Oct 25	Nov 1	Nov 8	Nov 15	Nov 22	Nov 29	Dec 6	Dec 13	Dec 20	
Q. Q. 1													
Brainstorming													
Concept Generation													
Concept Evaluation													
	Design												
[М	anufacture Pro	totype I Con	nponents									
[Order componen						Final Design						
Assemble Prototype I													
Test Prototype I													
Manuf							cture Prototype II Components						
						Asser	Assemble Prototype II						
						Tes	st Prototype I	I					
							Manufacture	e Final Desig	an Compone	nts			
							Assemble Final Design						
							Test Final Design						
										Optimiz	e Final Desi	gn	

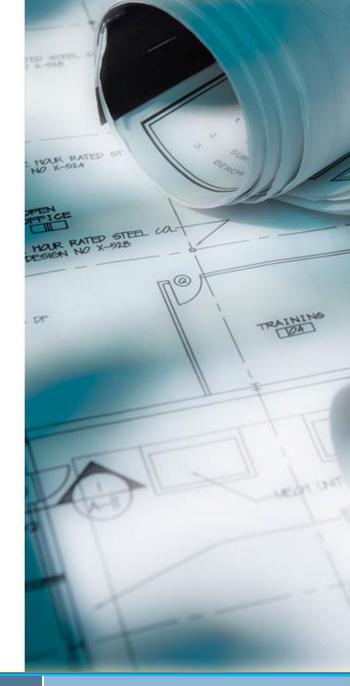
Christian Mard - 28

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Future Plans

End of Semester Goals

- Working autonomous vertical and horizontal flight
- Optimize gains for Pitch, Roll, Yaw control for Prototype II frame


Christian Mard - 29

2nd Semester - Competition Objectives

- Waypoint navigation
- Functioning sensor package
- Payload delivery

Summary

- Tri-copter
- Flying Wing
- Furthered Firmware Developement
- Tri-copter integration

References

[1] - "FireFLY6 - Welcome to the Revolution." BirdsEyeView Aerobotics. N.p., 2015. Web. 20 Oct. 2015.

[2] - Hazelhurst, Jethro. "Pixhawk Graphic for Documentation." DIY Drones. N.p., 18 Dec. 2013. Web. 19 Oct. 2015.

[3] - Owenson, Gareth. "How to Build Your Own Quadcopter Autopilot / Flight Controller." Owenson.me. N.p., n.d. Web. 19 Oct. 2015. http://owenson.me/build-your-own-quadcopter-autopilot/>.

[4] - "Cobra CM-4510/28 Multirotor Motor, KV=420." Cobra Motors USA. N.p., n.d. Web. 19 Oct. 2015. < http://www.cobramotorsusa.com/multirotor-4510-28.html>.

[5] - "Cobra 40A Opto Multirotor Esc" Cobra Motors USA. N.p., n.d. Web. 20 Oct. 2015 <http://www.cobramotorsusa.com/multirotoresc-40amp.html>.

[6] - "Cobra CM-4510/28 420Kv Motor Propeller Data" Innov8tive Designs. N.p., n.d. Web. 20 Oct. 2015 < http://innov8tivedesigns.com/images/specs/Cobra_CM-4510-28-420Kv_Specs.htm>.

Appendix

Reynold's Number:

$$Re = \frac{\vec{V} * L}{v}$$
[1]

Lift Equation:

$$F_L = C_L * \frac{\rho * \vec{V}^2}{2} * S$$

Flight Time:

$$Time = \frac{Battery \ Capacity}{Total \ Amperage}$$

[2]

[3]

Questions

Quadcopter

- Inefficient with horizontal flight
- 4 motors, more power consumption

Firefly Y6

- Payload weight is low
- Expensive
- 6 motors, even more power consumption

Previous Year Design

- Heavy (8,238g)
- Firmware not supported
- Difficult to repair / modify
- Unstable horizontal flight

• Relatively high power consumption

Relevant Data Motor Spec

Component	New Design				
All up weight	5500g				
Number of motors	3				
Thrust needed per motor	~1850g or ~65oz				
Thrust $(n = 2)$	~3700g or ~ 131oz				
Size of props	16" x 5.5"				

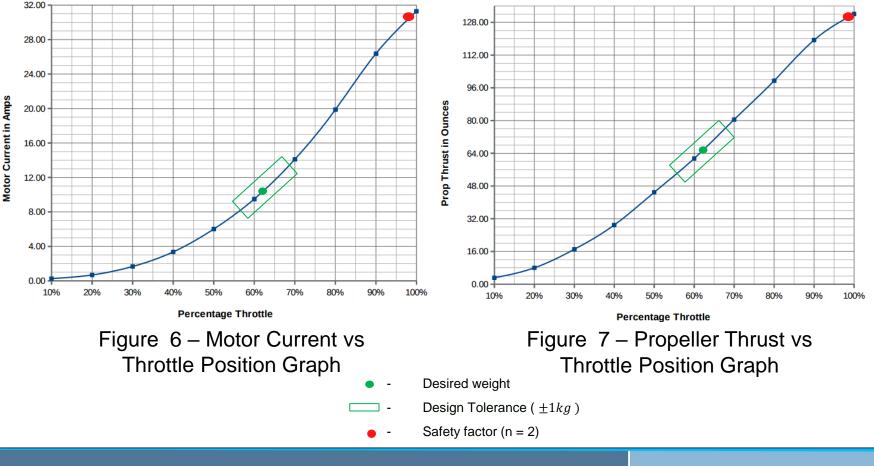


Figure 5 – 4510/450kv Cobra Motor^[4]

Relevant Data Motor Spec

Motor Current vs Throttle Position

Propeller Thrust vs Throttle Position

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Relevant Data Prop Spec

Prop	Prop	Li-Po	Input	Motor	Input	Prop	Pitch Speed	Thrust	Thrust	Thrust Eff.
Manf.	Size	Cells	Voltage	Amps	Watts	RPM	in MPH	Grams	Ounces	Grams/W
APC	14x5.5-MR	6	22.2	21.50	477.3	7,525	39.2	2788	98.34	5.84
APC	16x5.5-MR	6	22.2	31.29	694.6	6,915	36.0	3749	132.24	5.40
APC	18x5.5-MR	6	22.2	38.76	860.5	6,414	33.4	4468	157.60	5.19
GemFan	15x4.5-MR	6	22.2	19.73	438.0	7,638	32.5	2661	93.86	6.08
GemFan	16x4.5-MR	6	22.2	25.37	563.2	7,276	31.0	3220	113.58	5.72
RC-Timer	12x5.5-CF	6	22.2	16.44	365.0	7,874	41.0	1911	67.41	5.24
RC-Timer	13x5.5-CF	6	22.2	21.90	486.2	7,495	39.0	2417	85.26	4.97
RC-Timer	14x5.5-CF	6	22.2	29.31	650.7	7,021	36.6	2855	100.71	4.39
RC-Timer	15x5.5-CF	6	22.2	39.95	886.9	6,352	33.1	3375	119.05	3.81

Figure 9 – 4510 Cobra motor propeller comparison^[6]

Propeller Chart Color Code Explanation

The prop is to small to get good performance from the motor. (Less than 50% power)

The prop is sized right to get good power from the motor. (50 to 80% power)

The prop can be used, but full throttle should be kept to short bursts. (80 to 100% power)

Relevant Data Flight Time

• Better flight time (65% increase) from previous year's design

Component	Old Design	New Design			
Amp Draw (100%)	38.76	31.29			
Number of Motors	4	3			
Total Amp Draw	155.04	93.87			
Flight Time (mins) [A.3]	3.87	6.39			

** Based on 100% thrust, 22.2 volt system, and 10,000 mAh battery

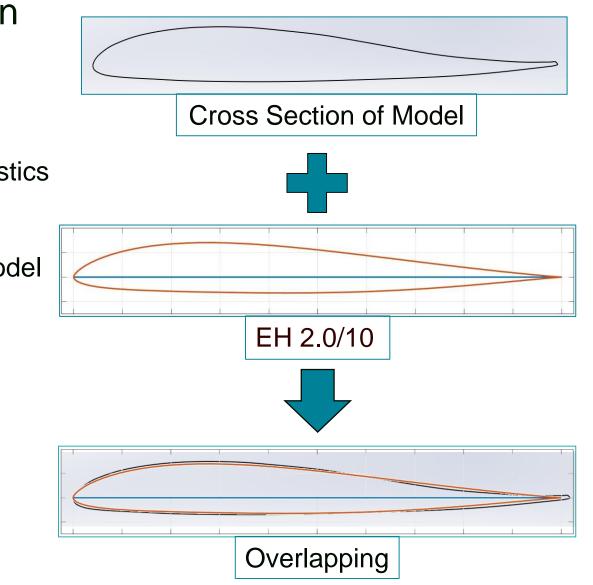
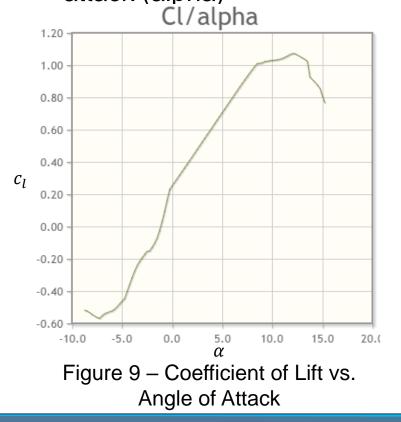
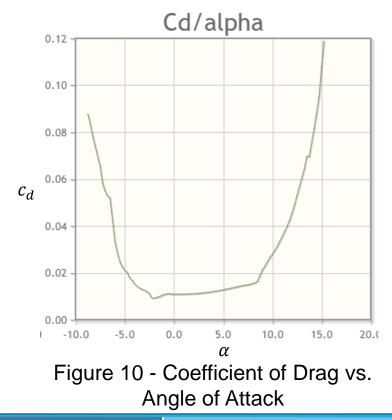


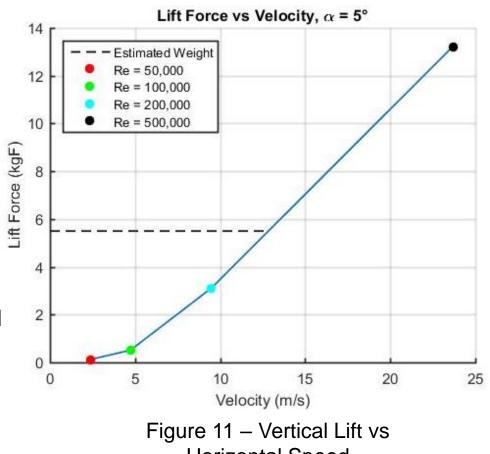
Figure 8 – Electronic Speed Controller^[5]

Relevant Data Airfoil Determination


- Airfoil needed for aerodynamic characteristics
- 2-D Sketch from 3-D model


• Tailless R/C Aircraft

Relevant Data Lift and Drag Coefficients


- Airfoil Tools Analysis of EH 2.0/10
 - Based on Reynold's Number (200,000 Below)
 - Outputs lift and drag coefficients based on angle of attack (alpha)

Relevant Data Lift Force

- Relationship formed from varying Reynold's Numbers (Re)
- Estimated Weight: 5500g
- Predicted Velocity: ~12.5 m/s^[A.1-2]

Horizontal Speed

Relevant Data Current Firmware Code

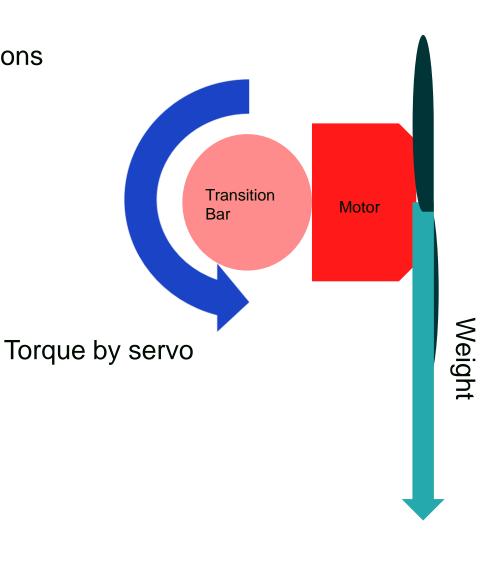
- User-Friendly
- Open-source collaboration
- VTOL Firmware
- Diverse hardware compatibility

Figure 12 – Pixhawk Microcontroller^[2]

Controls-Servo Torque Calculations

Front Tilt-Rotor

Force on servo


F = m*a F = 0.772g * 9.8 m/s F = 7.566 N

Torque on servo

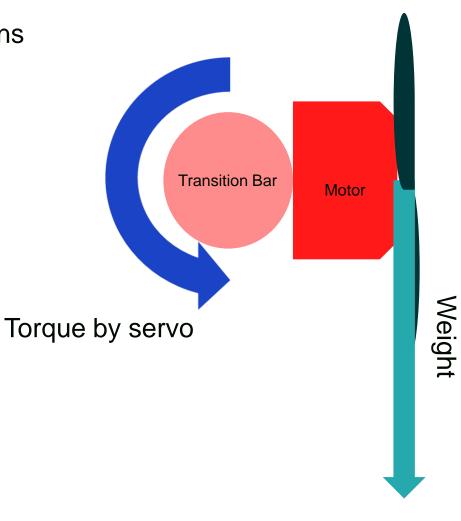
- $T = r^*F$
- T = 0.08128m * 7.566N
- T = 0.615Nm = 87.091 oz-in

Front Tilt-Rotor & Tail Tilt-Rotor Servo

Controls-Servo Torque Calculations

Tail Tilt-Rotor

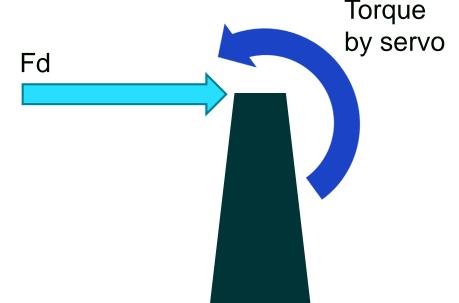
Force on servo


F = m*a F = 0.300g * 9.8 m/s F = 2.940 N

Torque on servo

- $T = r^*F$
- T = 0.08128m * 2.940N
- T = 0.239Nm = 33.845 oz-in

Front Tilt-Rotor & Tail Tilt-Rotor Servo


Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Controls-Servo Torque Calculations

Elevon

Force on servo Force of Drag = F_D Elevon Servo $F_D = \frac{1}{2}\rho V^2 A C_D$ $F_D = \frac{1}{2} \times 1.225 \text{kg/m}^3 \times (22.35 \text{ m/s})^2 \times 0.02288 \text{m}^2 \times 1.3206$ F = 9.245 N Torque

Torque on servo T = r*F T = 0.04537m * 9.245N T = 0.423Nm = 59.902 oz-in

